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Blind separation of audio sources

AUDIO BSS = AUDIO + BSS

• AUDIO is complicated. You know why!

− Long impulse responses

− Time-varying contexts

− Real time constraints

− <Your favorite audio annoyance>

• B.S.S. is complicated.

− it’s blind!

− Maybe we don’t want to be so blind. . .

− Statistical independence is easy to understand, hard to express

− <Your favorite statistical annoyance>

→ This talk: focus on the statistical concepts for BSS.

(yes, it means considering non convolutive mixtures).



Outline

• The likelihood approach

• Likelihood and independence

• Outrageously simple models for random processes:

− non Gaussian i.i.d. models

− Gaussian stationary models

− Gaussian non stationary models

• Connections between statistical independence and sparsity.



Who wants to be blind?

Simplest BSS model: X = AS with A unknown and independent rows in S.

We can build a probabilistic model p(X|A) and fit it blindly in the maximum
likelihood sense:

ÂML = argmax
A

log p(X|A)

But once we have a likelihood, we can as well incorporate knowledge about
the mixing system by defining a prior p(A).

Now, by the standard Bayesian argument the MAP estimate of A is

ÂMAP = argmax
A

[log p(A|X)] = argmax
A

[log p(X|A) + log p(A)]

The first term log p(X|A) is a measure of fit between data and model (see next)
while the second term log p(A) encodes prior knowledge about the system.

There is a continuum between fully blind and fully non blind. The extreme
case is hard constraints (or parameterization) of the system: A = A(θ).

→ In any case, we need a ‘good’ (simple, yet expressive) likelihood p(X|A).
This talk: all about log p(X|A).



Statistical models for static mixtures

• X = {xi(t) | 1 ≤ i ≤ n, 1 ≤ t ≤ T}, an n× T matrix data set.

• The static ICA model is X = AS with independent rows in S:

X = A ×
· · · S1 · · ·

...
· · · Sn · · ·

• We consider fitting this model in the maximum likelihood sense.

• To build a likelihood for A, all that is needed under the independence as-

sumption are the pdf’s PS1
, . . . , PSn for each row of S.

So we want to look very hard into

P (X) = P (X|A, PS) = P (X|A, PS1
, . . . , PSn)

The easy part is

P (X) =
1

|A|T
PS(A−1X) =

1

|A|T
n∏

i=1

PSi
([A−1X]i)



Likelihood and contrast functions

The shape of the likelihood. In a transformation model X = AS with pa-

rameters (A, PS), the likelihood contrast −E log p(X|A, PS) is a distribution

mismatch:

−E log p(X|A, PS) = K [PY |PS] + H(X) Y = A−1X

where K [f | g] =
∫

f log f/g is the Kullback divergence between probability

distributions and H is Shannon differential entropy.

Y = Ŝ = A−1 × X

Conclusion: in our model, the (log)-likelihood is a measure of the fit between

the data and the model in the sense that maximizing the likelihood of A

is (on average) identical to minimizing the divergence between the observed

distribution PY of Y = A−1X and the hypothetical distribution PS of the

sources.

It all boils down to studying contrast functions K [PY |PS].



Maximum likelihood and minimum dependence

Geometry (repeat). In a transformation model X = AS with parameters

(A, PS), the likelihood contrast −E log p(X|A, PS) is a distribution mismatch:

−E log p(X|A, PS) = K [PY |PS] + cst Y = A−1X

where K [f | g] =
∫

f log f/g is the Kullback divergence.

Statistics. The rows of S are independent: PS =
∏

i PSi
.

K [PY |PS] = K
[
PY |

∏
i PYi

]
+
∑

i K
[
PYi

|PSi

]
= dependence + marginal mismatch

Optimizing over nuisance parameters PSi
kills each K

[
PYi

|PSi

]
and leaves us

with (in)dependence:

I(Y )
def
= K

[
PY |

∏
i PYi

]
a.k.a. mutual information

→ Maximum likelihood leads to maximum independence. . .

→ . . . and provides a definition for it.

→ Next: Focus on mutual information or ‘dependence’ I(Y ).



The Holy Grail of ICA

The ultimate goal of ICA is just that:

finding components which are ‘as independent as possible’.

In a nutshell, for the static noise-free BSS model X = AS, we want to solve

min
A

I(Y ) where Y
def
= A−1X and I(Y )

def
= K

PY |
∏
i

PYi



Problem

There is no way that mutual information can be estimated in full generality.

Instead, we try to build statistical models (families of probability distributions)

in which I(Y ) can be estimated from an n× T data matrix Y .



Correlation

If an n×T data matrix Y is modelled as the realization of Gaussian, temporally

white noise Y G, its distribution is specified by a single n× 1 mean vector EY

and a single n× n covariance matrix RY .

In this model, dependence (or mutual information) boils down to . . .

C(Y )
def
= I(Y G)

= K

[
PG

Y |
∏

i P
Y G

i

]
= T ×K [N (EY, RY ) | N (EY,diagRY )]

= T ×
1

2
log

det diagRY

detRY

. . . correlation which also measures the non-diagonality of RY

C(Y ) = T × off(RY )

But global decorrelation is just too cheap for BSS.



Three points of view on a time series

A sequence

Marginal probability density Spectral energy density Temporal energy density

Same marginal Same spectrum Same variance profile

Using about 20 parameters to capture one out of three possible aspects of a times series.

• All models are wrong, but some are useful —George Box

• . . . especially for BSS. —JFC.



The non Gaussian i.i.d. case

The (non Gaussian) i.i.d. case: Time structure is ignored.

P (Y ) = P (Y (1), Y (2), . . . , Y (T ))

=
∏
t

Pt(Y (t)) Independently and . . .

=
∏
t

p(Y (t)) . . . identically distributed.

where p() is the n-dimensional pdf common (by assumption) to all Y (t), 1 ≤
t ≤ T .

Then, divergence between T -long time series distributions:

K

∏
t

Pt |
∏
t

Qt

 =
T∑

t=1

K [Pt |Qt] = T ×K [p | q]

depending only on the n-dimensional distributions p and q.

Yes, my notations are crappy.



Geometry of non Gaussian dependence

The Kullback divergence is not an Euclidean distance but in some cases there

is still a Pythagorean theorem. This is happening right in front of your eyes.

SG=0.029

I=0.158

G=0.103

C=0.084

H=0.187

some 2D density

Gaussian approx.

Product approx.Gauss. prod. approx.

Y ∼ P (Y1, Y2)

Y P ∼ P (Y1)P (Y2)

Y G ∼ N (Cov(Y ))

Y PG ∼ N (diagCov(Y ))

C(Y )
def
= K

[
Y G |Y PG

]

G(Y )
def
= K

[
Y |Y G

]

I(Y )
def
= K

[
Y |Y P

]

Orthogonal projections → two right triangles → two Pythagorean theorems



Dependence and non Gaussianity

• Non Gaussianity. Define the non Gaussianity G(Y ) of Y as

G(Y ) = K [PY | N (RY )]

i.e. how much the best Gaussian approx. fails to mimic the distrib. of Y .

• Remember the correlation C(Y ) of Y

C(Y ) = K [N (RY ) | N (diagRY )]

i.e. how much the covariance matrix RY of Y fails to be diagonal.

• All these are (geometrically) connected by

I(Y ) +
∑
i

G(Yi) = C(Y ) + G(Y )

• Under linear transforms, G(Y ) is constant so

I(Y ) = C(Y )−
∑
i

G(Yi) + cst

→ Hence, under linear transforms, making the entries of Y as independent as
possible (min I(Y )) is identical to making (as much as possible) Y uncorrelated
and each of its entries non Gaussian.



Non Gaussianity (cont.)

Repeat: Under linear transforms, making the entries of Y as independent as

possible (min I(Y )) is identical to making (as much as possible) Y uncorrelated

and each of its entries non Gaussian.

• Note 1: The relation I(Y ) = C(Y )−
∑

i G(Yi) + G(Y ) also reads

Complicated = Simple - Simples + Complicated constant

• Note 2: Some people/algos enforce C(Y ) = 0 (pre-whitening) but even

that leaves us with with the not-so-easy-after-all measure of marginal non-

Gaussianity G(Yi). So,how do we do that?

• Note 3: Connection between non Gaussianity and sparsity:

See next slides.



Non Gaussianity and sparsity

Remember that we arrive at the non Gaussianity objective G(Yi) for each recov-
ered source by assuming that the pdf of the sources are (perfectly) estimated
from the data.

If one wants to avoid estimating (explicitly or implicitly) the pdf of the sources,
one may try to select a fixed non Gaussian target distribution PSi

= Qi for
each component. The objective would be to minimize

K [PY |
∏

i Qi] .

But this is exactly the log-likelihood contrast! So, if the pdf’s of the sources
are known, one should do just that, indeed.

If the pdf’s are not known but are expected to be “sparse”, then one could
use some sparse guess Qi in place of the true but unknown distribution.
Example: a mixture of two Gaussians Qi(u) = (1−α)N (u; 0, σ2

1)+αN (u; 0, σ2
2)

with zero mean and variance σ1 “smaller” than σ2.

This works (provably) provided the mismatch between PSi
and Qi is not too

large. It does not work if a sparse model is used and the true sources are
“anti-sparse” and vice-versa. In some technical sense, the truth PSi

and the

guess Qi should be “on the same side of the Gaussian” so that minK
[
PYi

|Qi

]
works in the same direction as maxG(Yi).



Bad luck

An example with two sources

True distribution Hypothesized distribution Estimated distribution

Left: Joint histogram for two sparse sources. Each source is a mixture of two
zero-mean Gaussians.

Middle: The hypothesized distributions Qi also are mixtures of Gaussians but
anti-sparse Qi(u) = 1

2N (u; 1, σ2) + 1
2N (u;−1, σ2)

Right: The best (maximum likelihood) match minK [PY |
∏

i Qi] is obtained
when Y is a π

4-rotated version of the orginal sources.
It’s not only wrong; it’s maximally wrong!



Plan: Everything should be as simple as possible, but not simpler.

• Source separation is impossible if sources are modeled as Gaussian, iden-

tically and independently distributed.

• Two simple possibilities to move away from Gaussian i.i.d.:

(a) Non Gaussian models without time (or space) structure.

(b) Time structure within a Gaussian framework.

We have just seen item (a). What about item (b)?

• Simple time structures: in some basis (sample basis, Fourier basis, wavelet

basis, . . . ), the coefficients of the process are uncorrelated with a smoothly

varying variance.

• Questions:

– Dependence in time-structured Gaussian models.

– Connections between dependence, correlation, sparseness and other non

properties.

– Algorithms?



For example. . .

• The non Gaussian i.i.d. model.

The probability for an n×T data batch X in a non Gaussian i.i.d. model reads

P (X) =
T∏

t=1

q(X(t))

Hence, it is completely specified by a p.d.f. q on n× 1 vectors.

• A non stationary Gaussian model.

The probability for an n × T data batch X in a simple non stationary model

reads Rt

P (X) =
T∏

t=1

φ(X(t);Rt) φ(x;R)
def
=

1√
2π detR

exp

(
−

x†R−1x

2

)
Hence, it is completely specified by a sequence Rt of covariance matrices.



Mutual information

Mutual information I(Y ) = K
[
PY |

∏
i PYi

]
takes two different forms (and mea-

sures different things) depending on which model we embed the data.

• In the non Gaussian model, we just saw:

P (Y ) =
T∏

t=1

q(Y (t)) −→
1

T
I(Y ) = K [q(·) |

∏
i qi(·)]

• In the non stationary model:

P (X) =
T∏

t=1

φ(Y (t);Rt) −→
1

T
I(Y ) =

1

T

T∑
t=1

C(Y (t))

where C(·) is the correlation of a vector.

Hence, mutual information I(Y ) appears as a time-averaged correlation in the

non stationary Gaussian model.

• Note: if q is a Gaussian distribution or if {Rt} is a constant sequence both

versions of mutual information boil down to the correlation C(Y ).



Algorithm for non stationary signals

Goal: minimize an estimate of I(Y ) =
∑T

t=1 C(Y (t)).

1) For a partition {I1, . . . , IQ} of the observation interval [1, T ] in Q sub-intervals

of lengths τ1, . . . , τQ, form local sample covariance matrices:

R̂(q) =
1

τq

∑
t∈Iq

X(t)X(t)†

2) Jointly diagonalize the local covariance matrices, using Pham’s algorithm

min
B

Q∑
q=1

τq off(BR̂(q)B†)

Good things, in no particular order: • It is a maximum likelihood approach, •
Smoothing by local averaging, • No need for prewhitening, • Sufficient statis-

tics, • Fast algorithm, • Explicit measure of dependence, • Super-efficiency, •
Possible automatic partitioning.



Life in Gaussian non stationary land

Marginal non−stationarities

Joint non−stationarity

Correlation

Stationary

Independent

Dependence

Same geometric structure as in the non Gaussian i.i.d. case.



Dependence, correlation and non stationarity

Non stationarity. The unavoidable definition, with 〈Rt〉 = 1
T

∑T
t=1 Rt,

S(Y ) = K
[
Y |Y S

]
=
∑
t

K [N (Rt) | N (〈Rt〉)]

For scalar processes, non stationarity boils down to

S(Yi) =
T

2

{
log〈σ2

i (t)〉 − 〈logσ2
i (t)〉

}

The joint non stationarity S(Y ) is constant under linear transforms. Hence,

two Pythagoras yield again:

I(Y ) = C(Y )−
n∑

i=1

S(Yi) + cst

Meaning: The most independent linear components are

maximally uncorrelated and non stationary.

Heuristic interpretation: the cocktail party.



Sparseness and non properties

- In the non Gaussian model, ICA does not necessary lead to sparse sources

because G(Yi) measures deviation from Gaussianity ‘on both sides’ of N (0, σ2
i ).

- In a non stationary Gaussian model, the non-stationarity of each component

S(Yi) ∝ log〈σ2
i (t)〉 − 〈logσ2

i (t)〉

can aslo be read as a sparseness measure.

If the variance profile {σ2
i (t)} is constant, then S(Yi) = 0 but is otherwise

positive.

Our non-stationarity index S(Yi) goes to ∞ if there is any silent frame. This

also leads to super-efficiency.

Note: Here we are talking about sparsity of the distribution of energy (across

time frames). This is not the same thing as the sparsity of the coefficients of

the source signals.



Separating stationary signals

For separating stationary signals, do just the same in the Fourier domain:

Time intervals become frequency bands.

Rationale: the DFT points of a stationary process are uncorrelated variables

with a variance equal to the spectral density.

For Gaussian stationary processes, this procedure is close to optimal for

‘smoothly’ varying source spectra.

Blind separation of component i from j requires spectral diversity:1

Q

Q∑
q=1

Piq

Pjq

1

Q

Q∑
q=1

Pjq

Piq

 > 1.

where Piq is the energy of the i-th component in the q-th spectral band.

The same diversity requirement holds for the non stationary model but is very

likely to be met there.

Note: SOBI: bad; ML: good.



Still more degrees of freedom

A natural extension is to model the signal in the time-frequency plane or in

the wavelet domain.

The implicit model then is that each source has a different pattern distribution

of energy in time-frequency domains or in time-scale domains.

The size of the time-frequency ot time-scale domains should be chosen to

have a reasonable number of Gabor atoms in each domain so that the energy

can be estimated in each of them.

Note: it is also possible to use the likelihood to select the partitioning of the

the time-frequency plane which gives the best contrast between the energy

distribution of the sources (adaptive partitioning).



Contrasting our models

Model non Gaussian non stationary non flat spectrum
M G S F

Source parameter marg. pdf variance profile power spectrum

Diversity required no yes yes

Exhaustive stat. no (in practice) yes yes

Optimization gradient et al. joint diag. joint diag.

Estimation of nuisance possibly automatic automatic

# of nuisance parameters o(T ) O(T ) o(T )

Include noise not so easy easy easy

Super-efficiency non diff. pdf silence spectral holes

Sparsity possibly yes yes

Source extraction possible probably probably not

And, after all, non Gaussianity may just be non stationarity in disguise. . .


