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ABSTRACT
Nearly all approaches for underdetermined blind source separa-
tion (BSS) assume independent and identically distributed (i.i.d.)
sources. They completely ignore the temporal structure of col-
ored sources such as speech signals. Instead, we propose a multi-
variate model based on a multivariate Gaussian distribution that
is then used to determine an unmixing matrix for underdeter-
mined BSS. Based on parameterization by cepstral coefficients
we present a novel ICA-based cost function for estimating the
speech-related parameters of the unmixing matrix. Experimen-
tal results support the proposed approach.

1. INTRODUCTION

Blind source separation (BSS) describes techniques that
aim at separatingP signals if no information is available
other thanQ mixed versions of the original signals. Most
BSS approaches assume that there are at least as many
microphones as source signals (Q ≥ P ), which is called
(over-) determined BSS. Since overdetermined BSS can
be reduced to determined BSS [1], we refer to both as
determined BSS.
Instead, we consider underdetermined BSS, where we have
fewer microphones than source signals (Q < P ). In this
case, (see e.g. [2, 3, 4], the separation quality in terms of
interference suppression and signal distortion is still not
as good as with determined BSS. This is particularly true
if wideband signals such as speech signals are involved.
The difficulty is that in contrast to determined BSS the so-
lution of underdetermined BSS goes beyond system iden-
tification. Even if the mixing system is fully identified,
additional effort is required to separate the mixtures.
Nearly all approaches designed to solve the latter prob-
lem assume independent and identically distributed (i.i.d.)
sources [2, 3, 4].While this assumption may serve well as
a first order approximation, it completely ignores the tem-
poral structure of colored sources such as speech signals.
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Here we propose a multivariate model that takes the tem-
poral correlation explicitly into account. We consider con-
volutive mixtures of speech signals in the time domain.
This paper concentrates on the separation and assumes
that the mixing matrix is known.
The contribution of this paper is based on the following
ideas: With the multivariate source model we can derive
an unmixing matrix for underdetermined BSS, which re-
sults in high quality source separation if the parameters of
this unmixing matrix are known. We rely on two princi-
ples when estimating the source-related parameters of the
unmixing matrix. First we reduce the number of param-
eters by utilizing real cepstral coefficients based on prin-
ciples of homomorphic signal processing [5]. Then we
apply independent component analysis (ICA) to estimate
the reduced set of parameters.
After formulating the problem analytically in Sec.2, we
provide statistical models for Bayesian inference in Sec.3
together with the resulting unmixing matrix. Section4
elaborates the concise parameterization of the unmixing
matrix. In Sec.5 we derive a novel algorithm for esti-
mating the speech parameters based on ICA. Section6
presents experimental results which are discussed in Sec-
tion 7.

2. PROBLEM FORMULATION

With sp(t) ∈ R denoting thep-th source signal (1 ≤ p ≤
P ) andhqp(τ) (0 ≤ τ ≤ L − 1) the impulse response
of lengthL from sourcep to sensorq, we obtain mixed
signalsxq(t) ∈ R (1 ≤ q ≤ Q, Q < P ) by

xq(t) =
∑

p

∑
τ

sp(t)h(τ − t) + n(t). (1)

n(t) denotes noise added to the sensors. Let

Sp =
[

sp(0) · · · sp(T − 1)
]T

, 1 ≤ p ≤ P (2)

denote a frame of lengthT of the p-th original speech
signal. (·)T denotes the transpose. We assume that the
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speech signal is stationary within a frame of lengthT with
autocorrelation

rp(τ) = E{sp(t)sp(t + τ)}. (3)

We summarize theP frames of the different source signals
by the vector

S =

 S1

...
SP

 ∈ RP ·T . (4)

For each sourceSp the autocorrelation matrixRp ∈ RT×T

is given by a symmetric Toeplitz matrix. Its first row is de-
fined by

rp =
[

rp(0) · · · rp(T − 1)
]
. (5)

We summarize theP autocorrelation matrices by

R =

 R1 0
...

0 RP

 ∈ RP ·T×P ·T . (6)

We define the mixing matrix

H =

 H11 · · · H1P

...
...

...
HQ1 · · · HQP

 ∈ RQ·(T−L+1)×P ·T , (7)

whereHqp denotes convolution matrices with Toeplitz
structure

Hqp =

 hqp(L− 1) . . . hqp(0) 0
...

0 hqp(L− 1) . . . hqp(0)



∈ RT−L+1×T . (8)

Similar to the source signals we define

Xq =
[

xq(0) · · · xq(T − L)
]T

, 1 ≤ q ≤ Q (9)

and summarizeXq by

X =

 X1

...
XQ

 ∈ RQ·(T−L+1). (10)

This results in a compact description of the mixing process
for one frame given by

X = HS + N (11)

Figure 1: Mixing process for underdetermined BSS with
Q = 2, P = 3, T = 5 andL = 3

as illustrated in Fig.1. N ∈ RQ·(T−L+1) is derived
from n(t) in a similar way to that used to deriveX from
x(t). The final goal in BSS is the estimation of signalsY
that resemble the original signalsS as closely as possible.
Since only the mixed signals are available, this is at best
possible up to arbitrary permutation and scaling. With de-
termined BSS it is sufficient to estimate the mixing matrix
H or its inverse. Since the mixing matrix is square and
therefore invertible (assuming thatH is non-singular), the
inverse can be used to separate the signals. In contrast
to determined BSS, in the underdetermined case estima-
tion of the mixing matrixH is insufficient. Even ifH
is available, estimating the original signals from the mix-
tures poses its own problem, sinceH cannot be simply
inverted. In the following we concentrate on estimating
the original signals and assume that the mixing matrix is
known or else can be estimated [2, 6, 7].

3. MODELS

We make the common assumption that the speech signals
are mutually independent

p(S) =
∏
p

p(Sp). (12)

We further assume that the speech signal is approximately
stationary within a frame of appropriately chosen length
T .
Nearly all approaches to underdetermined BSS assume in-
dependent and identical prior distributions. In contrast, in
this section we propose a multivariate prior based on the
analytically tractable, multivariate Gaussian distribution

p(Sp) = N (Sp|µp,Rp) (13)

with zero mean vectorµp and covariance matrixRp.
We also define the likelihood derived from the commonly
assumed additive white Gaussian sensor noise model with
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identical varianceσ2 across all sensors. Based on the mix-
ing process (11), this assumption results in the Gaussian
likelihood

p(X|H,S, σ2I) = N (X|HS, σ2I). (14)

From the Bayes’ rule [8] we then obtain the posterior of
the source signal given the mixed signals as

p(S|X) ∝ p(S) · p(X|H,S, σ2I) (15)

∝ N (S|µS ,ΣS)

with the correlation matrix

ΣS =
(

R−1 +
1
σ2

HT H

)−1

(16)

and the mean

µS =
(
σ2R−1 + HT H

)−1

HT X. (17)

Since the posterior distribution is again Gaussian, the MMSE
estimate is given by its mean, resulting in the estimated
source signals

Y =
(
σ2R−1 + HT H

)−1

HT︸ ︷︷ ︸
W

X. (18)

As shown in Sec.6, the unmixing matrixW is sufficient
for high quality source separation. The problem is now to
estimate the parameters of the unmixing matrix.

4. PARAMETERIZATION

The fewer the parameters that need to be estimated in rela-
tion to the available data, the better the estimate will be. In
order to reduce the number of parameters in the unmixing
matrix, we describe the autocorrelation by cepstral coeffi-
cients. We exploit the fact that speech signals can gener-
ally be concisely described by a few cepstral coefficients
[5]. In addition, the autocorrelation is related to the real
cepstrum by a one-to-one mapping based on the Wiener-
Khintchine theorem [9].
We summarize theDp real cepstral coefficients used for
thep-th source by the vector̂Sp. By zero-paddinĝSp to
lengthT , the autocorrelation sequencerp can be shown
to be given by

rp = IDFT
{

exp
(
2 · DFT

{
Ŝp

})}
, (19)

where IDFT {·} and DFT {·} denote the (inverse) Dis-
crete Fourier Transform andexp(·) is applied element-
wise.
To estimate optimal real cepstral coefficients based on the
cost function presented in Sec.5, we need the derivative

of the autocorrelation sequencerp with respect to the cep-
stral coefficientŜd

p , 1 ≤ d ≤ D, which denotes thed-th

element ofŜp. The derivative yields

∂rp

∂Ŝd
p

= (20)

2 · IDFT

{
exp

(
2 · DFT

{
Ŝp

}
− 

2πd

T
k

)}
.

Then, the derivative of the correlation matrixRp is given
by a symmetric Toeplitz matrix with∂rp

∂Ŝd
p

as its first col-
umn.

5. PARAMETER ESTIMATION

To estimate the cepstral coefficients of each source in a
given frame, we apply the principles of ICA. Based on
minimum mutual information (MMI) [10], which is the
most general approach to ICA [11], we define the cost
function

JICA = −E {log |det R|+ log |det C|+ (21)∑
p

log
(
pY p

(Y p)
)}

(22)

with E{·} denoting the expectation andC being defined
as

C :=
(
σ2I + HRHT

)−1

. (23)

For a gradient-based optimization of the cost function we
determined the derivative of the cost function by using the
multivariate source model (13). The result is given in (24),
where tr(·) denotes the matrix trace.

6. EXPERIMENTAL RESULTS

We performed experiments with three speech signals (two
male, one female) of1.62 seconds (8 kHz sampling rate).
We generated two convolutive mixtures with artificial im-
pulse responses of lengthL = 11 and assumed that the
mixing matrix was available. The signals were processed
in frames of T = 128 samples and shifted by64 sam-
ples. No noise was added to the mixtures. Therefore, the
varianceσ2 served as a regularization parameter and was
set atσ2 = 10−4. The sources had the same variance of
0.0037. We compared the following approaches:

E1 This constitutes the reference of the unprocessed
mixed signals

E2 The autocorrelation was directly estimated from
the original signals to provide an upper limit for
the separation performance ofW (18).
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∂JICA

∂Ŝd
p

= E

{
tr

((
HT CH − 1

2
R−1 −

(
I − 2 (WH)T

)
IHT CXXT CT H

)
∂R

∂Ŝd
p

)}
(24)

Method SDR SIR SAR

E1 −20.80 −6.01 −10.47
E2 18.39 33.13 18.60
E3 6.64 8.88 11.60

Table 1: Experimental results

E3 The autocorrelation was parameterized byD =
30 cepstral coefficients. These, in turn, were esti-
mated by the ICA-based approach as described in
Sec.5. To obtain values for the real cepstral coef-
ficients that led to invertible correlation matrices
we provided lower and upper bounds. They were
trained based on clean speech signals.

To evaluate of the separation results we used the signal-to-
distortion ratio (SDR), signal-to-interference ratio (SIR)
and signal-to-artifact ratio (SAR) as defined in [12]. The
averaged results for the different approaches are shown in
Table1.

7. CONCLUSION

The results in Table1 together with a subjective evaluation
suggest that knowing the autocorrelation together with the
mixing matrix is sufficient to perform high quality under-
determined source separation in noiseless environments
(E1 compared to E2). In other words, the problem of un-
derdetermined source separation can be reduced to the es-
timation of the underlying autocorrelations once the mix-
ing matrix is available. We proposed a novel ICA-based
cost function for estimating the autocorrelations based on
a parameterization by cepstral coefficients. An algorithm
based on the gradient of the cost function provides a good
estimate of the source signals in underdetermined BSS
(E3).
In the future we plan to estimate both the speech param-
eters of the unmixing matrix, and the mixing parameters
based on ICA. The estimation of both kinds of parame-
ters would result in a fully blind algorithm for underdeter-
mined source separation.

8. REFERENCES

[1] S. Winter, H. Sawada, and S. Makino, “Geometri-
cal interpretation of the PCA subspace approach for
overdetermined blind source separation,”EURASIP
Journal on Applied Signal Processing, vol. 2006,
2006, Article ID 71632, 11 pages.

[2] A. Blin, S. Araki, and S. Makino, “Underdetermined
blind separation of convolutive mixtures of speech
using time-frequency mask and mixing matrix esti-
mation,” IEICE Trans. Fundamentals, vol. E88-A,
no. 7, pp. 1693–1700, 2005.

[3] C. Févotte and S. J. Godsill, “A Bayesian approach
for blind separation of sparse sources,” Tech. Rep.,
Cambridge University Engineering Dept., January
2005.

[4] S. Winter, H. Sawada, and S. Makino, “On real and
complex valued L1-norm minimization for overcom-
plete blind source separation,” in2005 IEEE Work-
shop on Applications of Signal Processing to Au-
dio and Acoustics (WASPAA), New Paltz, NY, USA,
2005, pp. 86–89.

[5] L.R. Rabiner and R.W. Schafer,Digital processing
of speech signals, Prentice Hall, 1978.

[6] S. Winter, H. Sawada, S. Araki, and S. Makino,
“Overcomplete BSS for convolutive mixtures based
on hierarchical clustering,” inProc. ICA 2004, Sep
2004, pp. 652–660.

[7] L. Vielva, I. Santamaria, C. Pantaleon, J. Ibanez,
and D. Erdogmus, “Estimation of the mixing matrix
for underdetermined blind source separation using
spectral estimation techniques,” inProc. EUSIPCO
2002, Sep 2002, vol. 1, pp. 557–560.

[8] A. Papoulis and S.U. Pillai, Probability, random
variables, and stochastic processes, McGraw-Hill,
4th edition, 2002.

[9] J.G. Proakis and D.G. Manolakis,Digital signal pro-
cessing, Prentice Hall, 3rd edition, 1996.

[10] D.J.C. MacKay, Information theory, inference, and
learning algorithms, Cambridge University Press, 7
edition, Aug 2004.

[11] H. Buchner, R. Aichner, and W. Kellermann,Au-
dio signal processing for next-generation multime-
dia communication systems, chapter Blind Source
Separation for convolutive mixtures: a unified treat-
ment, Kluwer, 2004.

[12] C. Févotte, R. Gribonval, and E. Vincent,
“BSS EVAL toolbox user guide – Revision
2.0,” Tech. Rep. 1706, IRISA, April 2005.

IWAENC 2006 – PARIS – SEPTEMBER 12-14, 2006 4


