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ABSTRACT where > 0, v > 0, v > 0, a > 0, and the random variable

) . . A represents the DFT magnitude. In [3] a MAP amplitude esti-
In this paper we derive minimum mean-square error (MMSE) 5t0r was proposed for the case= 1. In this paper, we derive
amplitude estimators for DFT-based noise suppressionophe  \vSE amplitude estimators for the distribution classes- 1
timal estimators are found under a generalized Gammataistri and~y = 2. Fory = 2 the derivation is exact. A special case of
tion, which takes as special cases (different parameténgsx this class appears for = 1 when the density in Eq. (1) equals
all priors used in noise suppression schemes so far. Dgrivin o Rayleigh prior used in [1]. For the cage= 1 we cannot de-
the MMSE estimators involves integration of (weighted) 88s e exact MMSE estimators analytically, and therefore age
functions. In order to end up with analytical solutions,ome — roximations are applied, one of which is most accurate\at lo
parameter settings we have to approximate the Bessel@mscti  gNRs and the other at high SNRs. Analytical expressions can
In this paper we combine two types of approximations by Using pe found under these approximations. Furthermore, it issho

asimple binary decision between the two. We show by computer yht 5 simple binary strategy can be used to choose between th
simulations that the estimators thus obtained are vergtothe resulting amplitude estimators.

exact MMSE estimators for all SNR conditions. The presented
estimators lead to improved performance compared to the sup
pression rule proposed by Ephraim and Malah. Furthermioee, t
maximum performance is the same as compared to state of th
art amplitude estimators.

2. MMSE ESTIMATION OF AMPLITUDES

eWe assume that the speech and the noise process are urtedrrela
and that the noise process is additive, i.e.,

1. INTRODUCTION X (k,m) = S(k,m) + W (k,m), @)

where X (k, m), S(k,m), W(k,m) € C are complex-valued

The increasing number of speech processing applicatioss ha \onqom variables representing the DFT coefficients obtaine

resulted in more interest for ambient noise reduction nutho signal framem at frequency index: from the noisy speech,

Among those methods is the class of single-channel speech en o5, speech and noise process, respectively. Since DFT co-
hancement methods. Many of these methods are based on theicients from different time frames and frequency indiees
dlscret(_a Fourier transform (DFT) where_speech DFT _coefft6|e assumed to be independent, the indigesnd & will be omit-

are estlma_lt(_ad ona fr_ame-by-frame bas_ls by processing thg no ted for simplicity. We can writes = A¢/® and X = Re’®,

DFT coefficients. Existing methods estimate either the derap where random variabled and R represent the clean and noisy

valued speech DFT coefficients or the DFT amplitudes. It has amplitude, andb and® the corresponding phase values. In this

often.been assumed that DFT coefficients ha\{e a Gau§sian dis{york we focus on MMSE estimation of the clean amplitudes
tribution, e.g. [1]. Both complex DFT and amplitude estiorat

) L MMSE estimators for complex DFT coefficients under similar
can be derived by minimizing the mean-square error (MMSE) isyribtion assumptions are derived in [4]. The MMSE estien

or f'”d'“9 the maximuna posteriori(MAP) estllmate, und.er this of A is the expectation of the clean amplitude conditional on the
assumption. More recently there has been increased inferes noisy amplituder, i.e., E{A|r}. With Bayes’ formula we can
estimators under supergaussian distributions, becaaggitre a express the MMS’E' éétimatféa.s

better approximation of the observed distribution of shdeET

coefficients. In [2] complex DFT MMSE estimators under the N [0°° afrja(rla)fa(a)da
Gamma and Laplace distributions were derived. A=E{Alr} = ‘foo Fria(rla) fala)da (3)
In this paper we investigate MMSE speech amplitude estiraato Jo JRIA
under the generalized Gamma distribution of the followioigrf Assuming that the noise DFT coefficients have a zero-meas-Gau
e sian densityfr| 4 (r|a) can be written as [5]
9l v
fa(a) = T'(v) ™™ exp(—fa’), @ 2r r? 4+ a® 2ar
fRIA(T‘a) = 5 &Xp| — 3 Il =, (4)
oW oW oy
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following we derive MMSE amplitude estimators for the ca:
v=1landy = 2.

2.1. MMSE estimatorsfor v = 2
Inserting Eq. (1) withy = 2 and Eq. (4) into Eq. (3) gives

fooo a® exp (—% — ﬁaQ) Iy (2‘") da
Iy a?- 1exp( g—“v% —BaQ) I (2‘”) da’

A® — (5)

where the superscrig®) indicates thaty = 2. Using [6, Thm.
6.643.2], we can solve the integrals for> 0. After inserting
the relation betweeg and the second mome#it{ A}, which
for this case ig8 = v /0%, with 0% = E{|S|*}, we obtain [4]

q@ T +1/2) V@ Mo (Q)
T'(v) ¢ M(—u+1/2,0) (Q) ‘

(6)

whereQ £ C{/(u—s—{) v is known as the Whittaker function
and¢ = |r|?/o}y, and¢ = 0% /o}, are known as tha posteriori
anda priori SNR, respectively. The special case= 1 is the
estimator derived in [1].

2.2. MMSE estimatorsfor v =1
Fory =1, Eq. (3) becomes:

I3 a” exp (—— - ﬁa) Io ( ) da
fooo a’~1exp (—% — Ba) 0 (2‘”) da

whereg is now related to the speech spectral variancg%as-

A =

@)

v(v+1)/0%. Analytical solutions to these integrals are unknown

to the authors, but introducing approximations of the Bdsse-
tions allows us to solve the integrals analytically.

2.2.1. Bessel function approximation for small arguments

For small arguments of the Bessel functifyy we approximate
it using a Taylor series expansion around= 0. The Taylor
series ofly, truncated aftef terms, is given by [7]

K—-1
A
23 (57 ©
k=0
Substituting this expression fds (- ; K) in Eq. (7) gives
oo v a2 K—1 ar 2k 112
AW 2 fo a” exp (_;2; —Ba) kgo (;v;) (F) da
B 1 & ar 2k 13\2 ’
fo av— exp( ﬁa) kgo (%) (F) da

which, forv > 0, using [6, Thm. 3.462.1] leads to [4]

K—1 2k )
> ( é) (5) T+ 1+2k)D_( 1400 (T)

= T,

2%
) (1%) D(v +2k)D_(, 12k (T)

v (w+ /26 ForK — oo, A(l) — AM [4].
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Figure 1:Approximated gain functions fgr= 0 dB andv = 0.

A) Géls with K = 85 terms, and numerically evaluated gain
function,G'%)., B) GL" and high-SNR approximatiod'.) .

2.2.2. Bessel function approximation for large arguments

For large input arguments, however, a large valug o needed
to accurately approximaté,, which may result in numerical
problems and demanding computations. Therefore, for #ge ¢
the following well-known approximation af, is applied [7]:

Io(z) ~

ﬂlﬂ_x exp(a). ©

Substituting this approximation in Eq. (7) and using [6, Thm
3.462.1] we find fowr > 0.5 [4]

1 Doqyyyn(P)
2 D_(,_1/9(P)"’

whereP £ \/v(v+1)/v/2€ — /2(, and D, is a parabolic

cylinder function of order.

AD 2 (v —1/2) (10)

2.2.3. Combiningﬁlg) andA(;)

We now describe a simple and efficient strategy for combining
A andAL) which leads to a combined estimator that is a good
approximation of the true MMSE estimator under all conditio

of interest. Which of the approximations considered isesv$o

the true MMSE estimator depends on theriori anda poste-
riori SNRs, and the value of. Consider the following change
of variable:z = 2ar/o%,. This transformation makes it easier
to see under which conditions approximations are expeotbd t
accurate. The expression fdf" now becomes

o2, Jo© x¥ exp [—% - 2—1] Iy (x)dx

AW = . (1)
27"f v 1exp[ 2—2\/—] o (z)dx
with 4 = /v(v + 1). The functionz” exp[—% 2\/_] at-

tains its maximum for smaft when the exponentials decay fast
and z"” rises slowly. In this case it is especially important to
approximate the Bessel function well at small argumentss Th
happens whed or /(¢ is small andv is small. For these condi-
tions we may expeoﬂ( ) to be more accurate tha‘ﬁl>> , While

A(;) is more accurate for large SNRs. Note thas the more
dominant parameter af and¢, becausé is not present in the
quadratic term in the exponentials.

A gain functionG(¢, &) for a certain amplitude estimator is de-
fined as the estimate divided by the noisy amplitude, for exam

ple G\, op (¢, 6) = AY/r is the MMSE gain function for
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v = 1. As an example, Fig. 1 shows several gain functions for
ana priori SNR¢ of 0 dB andv = 1.6 as a function of poste-
riori SNR(. Fig. 1A shows the gain functio@é?, which uses

K = 85 terms, and3\.),,, which evaluates?ﬁé)MSE using nu-
merical integration of (7). The algorithms in [8] have besed

to evaluate the parabolic cylinder functions. We see mgf
and G4, lie virtually on top of each other, showing théﬁ,))

is a very good approximation of the true MMSE gain function fo
these combinations @ priori anda posteriori SNRs. These
gain functions could not be evaluated accurately for laagews-
teriori SNRs, mainly because of overflow problems. Fig. 1B

showsGél) andG(;) from Eqg. (10). Comparison with Fig. 1A
shows thaGgl) is too small for high{, while G(;) is too small
for low (. It can easily be proven thﬂﬁ? is always less than
GE\})MSE for all K [4], butG(;) can sometimes be slightly larger
than GE&I)MSE. Numerical calculations, however, have shown
thatG(;) does not exceed;S\?MSE by more than 0.10 dB, for
the parameter range of interest. These results, and ttesetiffe

in behavior of the two approximations as illustrated in HiB,
suggests a simple binary strategy: takenfsximunof the two

approximationﬂg) andG(;) as the gain function.

2.2.4. Error analysis

For the rangel < v < 3.2, —20 dB < ¢ < +20 dB,
—20 dB < ¢ < +14 dBthe true MMSE gain functiot ), s
could be evaluated without numerical problems. This raisge i
sufficient, because for larger, the accuracy of the high-SNR
approximationG(;) only increases, so the maximum error will
not increase. For the binary decisiomx| G(51>, G(;)}, the max-
imum positive error was-0.35 dB, and the maximum negative
error was—0.10 dB. A positive error means thaIS&)MSE was
larger than the approximation. Whet{}) is used in a binary de-
cision with G, i.e., max[ G}, G1)], the maximum positive
and negative errors are0.12 dB and—0.10 dB, respectively.
However, the maximum positive error increases with dedngas

v. Fory = 0.51, about 20 terms are needed/irﬁ?. Although

Gg) can be larger thaGE&)MS = it will not exceed it by more
than0.10 dB.

2.3. Input-output characteristics

In Fig. 2 we show input-output (I0) characteristics of the\d
estimators. In Fig. 2A we consider the case- 1 where A\”,

and A are combined into one estimaﬁg‘j) by means of the
binary decision, that isd\;) = max[ A", AL)]. The values

v € {0.8,1,1.5}, the constraint + o3, = 2, and¢ = —5 dB
and¢ = 5 dB are used. The IO characteristics are fairly insensi-
tive tov. In Fig. 2B we consider € {0.5,1, 1.5} for the case

~v = 2. The IO characteristics are more sensitive i@lues here
and a smaller value clearly leads to less suppression at higher
input values and to more suppression for lower input values.

3. SIMULATION RESULTS

In this section we present experimental resultsA6? and two
approximations ofA"), namely A, = max[ A", AL)] and
A;;). Further, we make comparisons with a modification of the
MAP amplitude estimator as presented in [3], which is a MAP

estimator under a generalized Gamma distribution wyits 1.
The MAP estimator proposed originally in [3] is

Agvlj)AP = max log fa(a)fra(r|a) (12)
using the approximation for the Bessel function Eq. (9).sThi
approximation is madbeforetaking the derivative with respect

to a to find the maximum. This leads to the gain function

/ ’—0.5
Gl =u+ u2+y , u=1/2— ,
MAP 2 / 1/CE

wherev’ = v — 1 and which is valid forv’ > 0.5 only. A
joint amplitude and phase MAP estimator was proposed as well
which can be derived without approximations. The gain fiomct

G s ap Of the joint MAP estimator is given by

!
G o= utJurt S u=1/2—- b (14
JMAP 2( / 4 /_C€ ( )

This estimator allows for a broader rangerdtvalues, namely
v’ > 0. Our first modification concerns the order in which
an approximation is made and the derivative taken in Eq.. (12)
More specifically, we compute the amplitude MAP estimator by
first taking the derivative in Eq. (12) artienusing the large-
argument approximatiofy /Io =~ 1, wherel; is the first-order
modified Bessel function of the first kind. Interestinglye tie-
sulting MAP estimator is identical to the joint MAP estimaio
Eq. (14). Our second modification concerns the parameter
In [3] the estimators were derived as a function of two free pa
rameters, while there is in fact only one free parameter.arhe
plitude MAP estimator we use in our experiments is modified ac
cordingly and is equal to Eq. (14) wifaset to/v (v + 1) [4].
For the experiments, the Noizeus database [9] was used which
consists of 30 IRS-filtered speech signals sampled at 8 ldte, ¢
taminated by various additive noise sources. We added campu
generated telephone-bandwidth white Gaussian noise adran e
noise source, since it is not present in the data base. Thefra
size is 256 samples, with an overlap of 50 %. The decision-
directed approach with a smoothing factor= 0.98 was used
to estimate¢ [1]. The noise variance was estimated with the
minimum statistics approach [10]. Further, in all expenitse
the maximum suppression was limited to 0.1.
To express the performance of the estimators in terms othpee
distortion and noise reduction separately, we follow therapch
of [3] and define segmental speech SNR as

). a9

where the vectas, represents thg'th clean speech (time-domain)
frame ands,, is the result of applying the gain functions to the
clean speech in the frequency domain and transforming lmack t
the time domain. To discard non-speech frames, an indeR set
is used of clean signal frames with energy no less than 30 dB
of the maximum frame energy in a particular speech sigl.
denotes the cardinality @P. Similarly, noise reduction is mea-
sured as

I

(13)

Isp 12

lIsp — 853

SNR-S= % > 10logy, (

peEP

HWpH%

SNR-N=

(16)

1
Pl Z 10logq (

Z AL
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Figure 2: Input-output characteristics with% + o2, = 2 for
A)y=1B)y=2.
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Figure 3: Measured squared error for white noise with A) SNR
=0dB. B) SNR = 10 dB.

wherew,, is thep’th noise frame, andv,, is the residual noise
frame resulting from applying the noise suppression fitiery.

Fig. 4 shows performance in terms of SNR-S versus SNR-N for
several values of and signals degraded by white noise. For a

fixed SNR-N,AE;” often leads to the best speech quality. This

is also audible, in the sense that weak speech components are

preserved slightly better than with Eq. (14). The distartio
measureD = 3° ., (A(k,m) — A(k,m))? is also considered,
which is an estimate of the quantity minimized by the estorat
derived in this paper. Fig. 3 plof® versusy. We see thatfl(cl>

improves overd) and the MAP estimator, and thdt?) scores
very well forv = 0.1. Fig. 5 shows performance in terms of
PESQ [11] versug for input SNRs of 5 and 15 dB and speech
signals degraded by street noise and white noise. The maximu

attainable PESQ scores are about the same for all estimators
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