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ABSTRACT

Most algorithms for blind source separation (BSS) of convolu-
tive speech mixtures are derived in a deductive way from abstract
statistical principles and exploit a combination of three signal
properties, i.e. nongaussianity, nonwhiteness and nonstationar-
ity. In this paper we show how a separation system can be build
the opposite, inductive, way using basic speech processing build-
ing blocks. The main block and starting point of our derivation
is a simple generalized cross correlation based localization sys-
tem with two microphones. The capability of source separation
(2 signals and 2 sensors) is added by duplicating the localization
structure and adding an inhibition mechanism which suppresses
already localized sounds. Finally, experimental results with arti-
ficially mixed speech signals are presented.

1. INTRODUCTION

Blind source separation (BSS) with FIR demixing filters
is one promising approach to solve the so called cock-
tail party problem. Here multiple speakers are talking at
the same time and a separation of one source from the
others using multiple microphone recordings is aimed for.
Good results in low reverberant environments have been
achieved, e.g. [1], [2], by applying the principles and al-
gorithms for instantaneous mixtures in the DFT domain.
However, these methods need some extra repair measures
as through the scaling and permutation ambiguity inher-
ent to BSS the separated signals differ from frequency bin
to bin and have to be aligned for proper reconstruction
[1]. The most common technique is to use localization
and similarity information across frequencies after sepa-
ration. This post processing is however unnatural and to
a certain degree error-prone and thus a more exact time
domain modeling for convolutive BSS as proposed for ex-
ample by Buchner et al. [3] seems more appropriate and
suitable to deal with long impulse responses. The algorith-
mic derivation in [3] is statistically motivated and driven
by the abstract concepts of exploiting nonwhiteness and
nonstationarity. A physical interpretation of the resulting
update equations of the separating filters is neither given
nor easy to find when deduced this way. In order to gain

more insight into BSS in the time domain, we therefore
construct in the following a two signal two sensor FIR
separation system by extending the well known General-
ized Cross Correlation (GCC) method [4] for Time Delay
Estimation (TDE). As a special case the natural gradient
update equations of the Buchner system are found.

2. BUILDING BLOCKS

In this section the two building blocks of the system are
described. For their motivation and derivation we first as-
sume the presence of only one source. Later on we will
lift this restriction.

2.1. Generalized Cross Correlation & Localization

The key component of the system is the generalized cross
correlation as it provides reliable estimates for signal time
delay between microphones when only one speaker is ac-
tive. The general definition of the correlation can be writ-
ten as

ϕx1x2(l) = IDTFT
{
G(ejΩ)Φx1x2(e

jΩ)
}

(1)

wherex1, x2 denote the two microphone signals,Φx1x2(e
jΩ)

the cross power spectrum ofx1 andx2 andG(ejΩ) is a
weighting filter. In practice the above equation is replaced
by a DFT and as weighting filterG(ejΩ) = 1/|Φx1x2(e

jΩ)|
is used to sharpen the cross correlation functionϕx1x2(l).
Eq. 1 describes then the so called Phase Transform (PHAT)
and reliable estimates for the time delay∆x1x2 can be ob-
tained by maximization, that is

∆x1x2 = arg max
l
{ϕx1x2(l)} . (2)

Although designed for a free field signal model, the above
method also works in low reverberant environments [5]
and we thus are able to identify the relative delay of the
main paths of both impulse responses from the signal to
both microphones and in direct consequence the direction
of arrival.
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2.2. Inhibition of known directions

With this knowledge of the main path delay of one sig-
nal we are now able to inhibit the signal by delaying and
subtracting the microphone signals. Fig. 1 depicts the situ-
ation. Only one speech signals1(n) is active and received
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Figure 1: Causal FIR inhibition system for localized
speech.

by two microphones. Due to the spatial offset and echoes
in the room the signalsxi(n) at the microphones can be
written as convolutionxi(n) = hi1(n) ? s1(n) wherehi1

are the room impulse responses from source1 to micro-
phonei. The inhibition is performed by a FIR filter and
sum structure with length2L + 1 where for the moment
the filterw11(l, n) = δ(l−L) is held constant such that a
signal delay ofL taps for causal filtering is realized. Filter
w12(l, 0) is initialized at timen = 0 with all zeros and
adapted according to the time delay estimate∆y1x2 of the
GCCϕy1x2(l) between the output of the inhibition system
y1(n) and the unprocessed received signalx2(n):

wi+1
12 (l, n) = wi

12(l, n) + µ1 · δ(l − (L + ∆i
y1x2

)) (3)

The consequence of this adaption with step sizeµ1 is that
the system will suppress the detected main room impulse
response path by subtracting the correct aligned sensor sig-
nalsx1(n) andx2(n). A repetition of the update rule in
Eq. 3, denoted byi, allows then to explain and identify
other prominent delays in the inter sensor transfer func-
tion H̃21(z) = H11(z)/H21(z) that mapsX2(z) toX1(z)
as the new correlationϕi+1

y1x2
(l) at stepi + 1 takes place

between the inhibited/filtered signal

yi+1
1 (n) = x1(n− L)− wi+1

12 ? x2 (4)

andx2(n). The above inhibition can therefore be inter-
preted as a channel estimation method and works best
on sparse channels. However, we can also extend the
method to adaptation of all taps when we drop the max-
imum search and adapt all filter weights proportional to
the GCC. Of special importance in this case is the version
with the weighting functionG(ejΩ) = 1/Φx2x2(e

jΩ) re-
sulting in the so called Roth processor which estimates the
linear filter mapping fromx2 to y1 and provides therefore
by itself an estimate of the inter sensor transfer function

H̃21 [4], which is then averaged and refined through mul-
tiple iterationsi. The complete formula with DFT imple-
mentation of the cross correlation reads for the full update

wi
21(n) = wi−1

21 (n)+µ2B ·F−1
(
Φ̂y1x2 � Φ̂x2x2

)
(5)

whereF−1 is an inverse FFT matrix of sizeN ×N ,� de-
notes element wise division of vector elements andΦ̂y1x2

resp. Φ̂x2x2 are vector DFT estimates of the cross and
normal power spectrum. The shift & window matrixB of
size(2L + 1) × N extracts the needed filter coefficients
from the longer inverse FFT vector by swapping the FFT
halves and shortening the correlation. Through the inhibi-
tion we are now able to separate a later impinging signal
s2(n) from s1(n) asy1(n) was trained to cancels1(n) and
thus contains only the other active signals which is in this
case onlys2(n).

3. COMBINING BLOCKS

For recovery ofs1(n) we have to add another copy of the
above blocks to the system as shown in Fig. 2. Under the
assumption that the inhibition system fors1 has already
converged, a good filtered referenceys2

1 of s2,
y1(n) = ys1

1 (n) + ys2
1 (n) (6)

≈ ys2
1 (n) (7)

= w11 ? xs2
1 (n)− w12 ? xs2

2 (n) (8)
is available at the outputy1. The superscripts2 denotes
the portion of the corresponding signal in the mixture sig-
nal. With this reference we can then estimate parts or the
full virtual linear cross filterhRoth

y1y2
from y1 to y2 using

the GCC method. For the Roth processor we get in the
frequency domain

HRoth
y1y2

(ejΩ) =
Φy2y1(e

jΩ)
Φy1y1(ejΩ)

≈
Φy

s2
2 y

s2
1

(ejΩ)

Φy
s2
1 y

s2
1

(ejΩ)
(9)

where the last term can be obtained by using the fact that
both signals are independent. In practice a furtherε is
added to the denominator in Eq. (9) to avoid division by
zero. A closer look at the above equation (9) shows that
the cross correlationHRoth

y1y2
(ejΩ) can be interpreted as

virtual optimum channel estimation in the Wiener sense
between the filtered version of signals2 in y1, i.e. ys2

1 ,
and the filtered version at output 2, that isys2

2 . The open
question that remains is how to use the mapping estimate
hRoth

y1y2
= IDTFT

{
HRoth

y1y2

}
for the inhibition update rule.

The answer is found from simple algebra as the relation-
ship of the virtual mapping filterhRoth

y1y2
can be expressed

in terms of all filters and signals:
hRoth

y1y2
? ys2

1 = ys2
2 (10)

hRoth
y1y2

? (w11 ? xs2
1 − w12 ? xs2

2 ) = ...

(w22 ? xs2
2 − w21 ? xs2

1 ) (11)

hRoth
y1y2

? (w11 ? h12 ? s2 − w12 ? h22 ? s2) = ...

(w22 ? h22 ? s2 − w21 ? h12 ? s2) (12)
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Figure 2: Full 2x2 separation system. For better under-
standing the upper part is assumed to have converged.

Rearranging terms for the unknown room impulse respon-
sesh12 andh22 yields then the desired inter sensor rela-
tionship in terms of the known current demixing and vir-
tual filters (hRoth

y1y2
):

(w21+w11?hRoth
y1y2

)?h12 = (w22+w12?hRoth
y1y2

)?h22 (13)

(w21 +w11 ?hRoth
y1y2

)?h12−(w22 +w12 ?hRoth
y1y2

)?h22 = 0
The above equality can then be used to find the new op-
timum separating solutionwopt

21 , wopt
22 for the filtersw21,

w22. y2 = wopt
22 ? xs2

2 − wopt
21 ? xs2

1
!= 0 (14)

= wopt
22 ? h22 ? s2 − wopt

21 ? h12 ? s2 (15)

=
(
wopt

22 ? h22 − wopt
21 ? h12

)
? s2 (16)

By comparing the terms in Eq. (16) with the ones in (14),
as optimal solutionwopt

21 = w21+w11?hRoth
y1y2

andwopt
22 =

w22 + w12 ? hRoth
y1y2

is found.
In practice the mapping estimate is not exact as we have
leakage from signals1 into y1, additional sensor noise and
approximation errors in the computation of the GCC, such
that a direct computation of the optimal coefficients is not
robust. We therefore fallback to our iterative step wise
inhibition as introduced for the single signal case (Eq. 3):

wi
21 = wi−1

21 + µ3 · wi−1
11 ? hRoth,i−1

y1y2
(17)

wi
22 = wi−1

22 + µ3 · wi−1
12 ? hRoth,i−1

y1y2
(18)

wi
11 = wi−1

11 + µ3 · wi−1
21 ? hRoth,i−1

y2y1
(19)

wi
12 = wi−1

12 + µ3 · wi−1
22 ? hRoth,i−1

y2y1
(20)

In comparison to the previous mentioned one signal case
we also relaxed the constant delay constraint on the diag-
onal filtersw11, w22. The reason for this is that we need a
compensation for the filtering introduced by the cross fil-
ters and adapting the diagonal filters is the easiest way to
solve this.

4. RELATION TO OTHER APPROACHES

An interesting finding when looking at the full update equa-
tions in (17)-(20) is that the GCChRoth

y1y2
with Roth weight-

ing is the Wiener filter that optimally tries to estimatey2

from y1. If we assume FIR structure for the2 · L + 1-
tap filter, we can also compute its equivalent time domain
solution with correlation matrices:

hRoth
y1y2

= rT
y2y1

R−1
y1y1

, (21)

wherery2y1 is a2 · L + 1 vector that holds cross correla-
tion values, i.e.ry2y1,i = E{y2(n)y1(n− L + i))} and
the autocorrelation matrix with a2 · L + 1 data vector
y1

T = [y1(n) y1(n−1) ... y1(n−2 ·L+1)] is defined as
Ry1y1 = E

{
y1(n)y1(n)T

}
. A comparison of our update

with the above channel estimate in (21) with the natural
gradient update rule in Buchner et al. [3] (equation 35 on
page 125) shows that both updates are structurally identi-
cal. Furthermore, this finding sheds new light on the fast
convergence of the algorithm in comparison to other up-
dates which result from different cost functions. It seems
that the good convergence results from the fact that the vir-
tual channel fromy1 andy2 is estimated in an “optimum”
way and its adaptation is fastest when only one signal is
active as the inverse matrices scale the step sizes of the cor-
responding inhibition filters. In addition the inverse matri-
ces can be interpreted as being responsible for removing
time structure, i.e. periodicity of voiced speech and cor-
relation in speech over time in general, from the normal
cross correlation. This removal is very beneficial for good
convergence as periodicity in the cross correlation leads to
strong misadaptions in the demixing filters and some time
is needed for averaging out this effect.
A major open point of our intuitive approach so far was the
operation behavior at the beginning when neither system
has converged. With the above link that the robust natural
gradient update equations from the Buchner et al. system
[3] can be related to a special case of our system with the
Roth processor, the same reasoning as in [3] holds and the
convergence analysis carries over.

5. SIMULATIONS

In order to demonstrate the working principle of the build-
ing blocks, we performed simulations with artificially con-
volved speech data sampled at16 kHz. As impulse re-
sponses a low demand scenario with measured Head Re-
lated Transfer Functions of tap length 50 from the CIPIC
database [6] was chosen. Finally, spatially uncorrelated
white noise was added to the mixture, such that the over-
all SNR is approximately12 dB and20 dB respectively.
The GCC was estimated with FFTs of size2048, the total
demixing filter length was 100 and the number of iterative
refinements20. After one frame was processed the data
was shifted50 samples.
Fig. 3 compares the performance of full and main path
inhibition for a male speaker, cf. Eq. (3) and (5). The step
sizes have been chosen empirically and areµ1 = 0.003
(PHAT single tap) andµ2 = 0.001 (Roth FFT, Roth TD).
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In order to avoid fluctuations due to strong time structure
in the cross correlation, divisions by small values in the
frequency domain are suppressed by adding a small ep-
silon of 0.01 to the denominator in Eq. 9. In the time
domain update the inverse auto correlation matrix is reg-
ularized by a diagonal loading of0.01I. The effect of
structure in the signals on the system performance can be
clearly seen in the performance plot for the inhibition of
one signal which measures the total energy of the resulting
filter a(n) from s1 to y1 at each processed frame of length
t = 0.128 sec, i.e. ||a||2 = ||w11 ? h11 − w12 ? h21||2.
At frame instances where only voiced speech is available,
the adaptation is slow when unvoiced parts are present the
channel can be identified much more reliable. The perfor-
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Figure 3: Typical performance of the inhibition system for
one active speech signal in white noise SNR= 12 dB.

mance of the full source separation system is depicted in
Fig. 4. The plot shows now the Signal To Interference
Ratio for each outputyi with normalized input signalssi,
i.e.

SIR1 =
var{ys2

1 }
var{ys1

1 }
=

||w11 ? h12 − w12 ? h22||2

||w11 ? h11 − w12 ? h21||2
. (22)

From the plot it is again evident that the algorithm slows
down and has even problems when one of the sources is
highly periodic and the corresponding excitation for chan-
nel estimation is not full band. To solve this problem bet-
ter strategies for regularization of the rank deficient auto
correlation matrix in the time domain or division by zero
handling in the frequency domain are needed.

6. CONCLUSIONS

An intuitive way to convolutive blind source separation
has been presented. Instead of deriving update equations
from an abstract cost function, the update rule was devel-
oped from source localization and inhibition principles.

Furthermore, it was shown that the GCC and especially
the Roth processor play an important role in designing fast
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Figure 4: Typical performance of the source separa-
tion system for two active speech signals in white noise
SNR= 20 dB (update via Eqs. 17 - 20)

converging systems. With the new insight how channel
estimation between the outputs is linked to inhibition, a
promising way to improve convergence has been opened.
The introduced processing blocks structure the source sep-
aration problem and a control and replacement of the al-
gorithms can happen this way more easily. We especially
aim at integrating Computational Auditory Scene Analy-
sis (CASA) ideas into the system.
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