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ABSTRACT

This paper addresses the problem of recovering spatial cues after
microphone array processing by blind source separation. Based
on the known demixing system determined by the blind source
separation, we derive two spatialization algorithms. One algori-
thm exploits the inverse of the demixing system, while the other
algorithm exploits the adjoint of the demixing system. Both al-
gorithms are evaluated by objective and subjective measures. We
therefore consider the recovered time difference of arrival and
the subjective perception of the spatialized signals.

1. INTRODUCTION

This paper is motivated by the so-calledcocktail-party
problem which arises when mixtures of multiple simul-
taneously active speakers are recorded by multiple mi-
crophones. In many applications (e.g. hands-free human-
machine interfaces, [1]), we need to focus on one single
source and try to suppress interfering sources. We address
this problem here byblind source separation (BSS) al-
gorithms which can deal well with unknown microphone
and source positions [2]. Furthermore, BSS provides us
with separated source signals which may be individually
selected for further processing. Unfortunately, the spa-
tial cues of the output signals are lost as conventional BSS
algorithms provide a monaural representation of each sep-
arated output. In this paper, we propose and compare two
algorithms, which are able to recover the spatial cues in
the BSS output signals by post-filtering. For this purpose,
we exploit the demixing filters obtained by the BSS al-
gorithm. For example, other approaches recover spatial
cues based on the input and output signals of the separa-
tion system [3], preserve the binaural cues during noise
reduction [4], or model the binaural cues by head-related
impulse responses [5].

Figure 1 illustrates our concept of post-filtering the
BSS output signals in order to recover the spatial cues.
Throughout this section, we derive the algorithms in the
DFT domain and we omit the time-dependency. Further-
more, we assume a maximum number ofQ simultane-
ously active sources andQ microphones. TheQ × 1 col-
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Figure 1: Q-channel mixing and demixing system with
post-filtering for spatialization

umn vectorss(ω), x(ω) andy(ω) capture the source sig-
nalssi(ω), the sensor signalsxi(ω), and the BSS output
signalsyi(ω), respectively (i = 1, . . . , Q). TheQ × Q

matricesH(ω) andW(ω) represent the unknown mixing
system in the form of room impulse responseshij(ω) and
the demixing system determined by BSS in the form of
FIR filterswij(ω) (j = 1, . . . , Q). Our proposed spatial-
ization concept is not restricted to a specific BSS algo-
rithm. We selected the time-domain BSS algorithm de-
scribed in [6].

In the DFT domain, the BSS output signals are



y1

...
yQ


 =




w11 · · · w1Q

...
. . .

...
wQ1· · ·wQQ


 ·




h11 · · · h1Q

...
. . .

...
hQ1· · ·hQQ


 ·




s1

...
sQ


 . (1)

For brevity, we have omitted(ω). By filtering the BSS-
outputyi(ω) with the spatialization filtersbji(ω), we (ap-
proximately) recover the spatial cues given by the un-
known mixing system. TheQ × 1 column vectorzi(ω)
captures theQ spatialized channelszji(ω) derived from
BSS-outputyi(ω). The necessary spatialization filters
bji(ω) are captured in theQ × 1 column vectorbi(ω).
Then, the spatialized output signalzji(ω) is given by

zji(ω) = bji(ω) · yi(ω). (2)

The problem of determining the spatialization filters
bji(ω) is addressed in this paper, which is structured as
follows: In Section 2, we first illustrate how the unknown
mixing system – and thus the spatial cues – can be approx-
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imated by the known demixing system. This approxima-
tion then allows the determination of the spatialization fil-
ters by exploiting theinverse andadjoint demixing matrix
(Sec. 2.2, 2.3). After presenting the results of objective
and subjective evaluations in Section 3, we finally draw
conclusions in Section 4.

2. RECOVERING SPATIAL CUES

In this section, we first approximate the unknown mix-
ing systemH(ω) based on the available demixing system
W(ω). We then introduce a spatialization approach which
determines the spatialization filters based on theinverse
demixing matrix. The second considered algorithm de-
rives the spatialization filters from theadjoint demixing
matrix.

2.1. Mixing System Approximation

Here, we introduce an approximation of the unknown
mixing systemH(ω) based on the available demixing sys-
temW(ω).

Referring to (1), we substitute the propagation from the
sources to the BSS outputs by theQ×Q matrixC(ω):

C(ω) = W(ω) ·H(ω) =




c11(ω) · · · c1Q(ω)
...

.. .
...

cQ1(ω)· · · cQQ(ω)


 . (3)

Neglecting permutations of the BSS output signals and as-
suming perfect source separation, matrixC(ω) simplifies
to

offdiag{C(ω)} = 0 (4)

and the output signals are then

yi(ω) = cii(ω) · si(ω), (5)

where the operator offdiag{C(ω)} returns the off-
diagonal elements of matrixC(ω).

Assuming invertibility of matrixW(ω), we may multiply
(3) with the inverse of matrixW(ω) and we thus obtain

H(ω) = W−1(ω) ·C(ω) =
adj{W(ω)}

det{W(ω)}
·C(ω). (6)

The required invertibility of matrixW(ω) is addressed in
Sections 2.2 and 2.3. For perfect separation, i.e., when (4)
is fulfilled, we may reformulate (6) to:

1

det{W(ω)}
[adj{W(ω)}]ij =

1

cjj(ω)
hij(ω). (7)

The operator[.]ij returns elementij of a matrix. With (7),
we may exploit the known demixing systemW(ω) in or-
der to approximately recover the spatial cues given by the
unknown mixing matrixH(ω) (Sections 2.2, 2.3). Note
that the matrixC(ω) is unknown but inherently given by
the BSS output signals.

2.2. Inverse Demixing Matrix

We now present an algorithm which defines the spatializa-
tion filters based on theinverse of the demixing matrix.

Firstly, we assume perfect source separation. With (2), (5)
and (7), filtering the outputyi(ω) with the spatialization
filter

bji(ω) =
[
W−1(ω)

]
ji

(8)

yields the spatialized signalzji(ω):

zji(ω) =
[
W−1(ω)

]
ji
· yi(ω) = hji(ω) · si(ω). (9)

Here, the spatialization filter equalizes the unknown filter-
ing byC(ω) and it exactly recovers the spatial information
given by the unknown mixing matrixH(ω). Using the in-
verse of the demixing system has been already applied for
monaural BSS in [7].

Secondly, we consider non-perfect source separation and
we therefore investigate the effect of the spatialization fil-
ters defined by (8) on the BSS output signals. Multiplying
(3) with the inverse mixing system and inverting again, we
can reformulate (3) leading to

W−1(ω) = H(ω)C−1(ω). (10)

According to (9), the spatialized signalzji(ω) is

zji(ω) = [H(ω)C−1(ω)]ji ·

Q∑

q=1

ciq(ω)sq(ω). (11)

We illustrate (11) by calculating the spatialized output sig-
nalz11(ω) for Q = 2:

z11 =
c11c22h11 − c11c21h12

c11c22 − c12c21
s1

+
c12c22h11 − c12c21h12

c11c22 − c12c21
s2 (12)

For brevity, we have omitted(ω). In the case of sufficient
source separation, i.e. offdiag{C(ω)} ≈ 0 (see Eq. (4)),
we may assume

||c11c22|| >> ||c12c21|| , (13)

i.e. the suppressed sources do not significantly contribute
to the BSS output signals. Hence, (12) simplifies to

z11 = h11s1 +
c12

c11
h11s2 −

c21

c22
h12s1 (14)

As desired, the spatialization filter recovers the spatial
cues given by the mixing system for source signals1(ω)
(term h11s1). Unfortunately, these spatial cues are also
imposed on source signals2(ω), which is additionally
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attenuated (termc12

c11

h11s2). The most disturbing phe-
nomenon is caused by the termc21

c22

h12s1: Source 1 is per-
ceived attenuated at the location of source 2.

Note that requiring invertibility of the demixing matrix re-
stricts this approach defined by (8). If the determinant of
the demixing matrix det{W(ω)} equals zero, we are not
able to calculate the spatialization filters for this frequency
component. We therefore compute the matrix inverse by
regularizing the determinant:

W̃−1(ω) =
adj{W(ω)}

det{W(ω)}+ ε
. (15)

ε denotes a small constant which avoids divisions by zero
and stability problems due to very small values of the de-
terminant.

2.3. Adjoint Demixing Matrix

Motivated by the optimum demixing filtersWopt(ω) =
adj{H(ω)}, which may be derived from [8], we now de-
fine the spatialization filters based on theadjoint of the
demixing matrix.

Again, we firstly assume perfect source separation. Refer-
ring to (2), (5) and (7) and filtering the outputyi(ω) with
the spatialization filter

bji(ω) = [adj{W(ω)}]ji (16)

yields the spatialized signal

zji(ω) = [adj{W(ω)}]ji · yi(ω)

= det{W(ω)}hji(ω) · si(ω). (17)

Comparing (17) with (9), we notice that the spatialization
filter perfectly recovers the spatial cues given by the filter
hji(ω), except for the scaling factor det{W(ω)}.

We now consider the spatialized output signals in the case
of non-perfect source separation. Filtering the output sig-
nal yi(ω) with the spatialization filter defined by (16)
yields

zji(ω) = [adj{W(ω)}]ji ·

Q∑

q=1

ciq(ω)sq(ω). (18)

Calculating again the spatialized output signalz11(ω) for
Q = 2 illustrates (18).

z11(ω) = det{W(ω)}h11(ω)

(
s1(ω) +

c12(ω)

c11(ω)
s2(ω)

)

(19)
Except for the scaling with det{W(ω)}, the spatializa-
tion filter perfectly recovers the spatial cues given by the
mixing system for source signals1(ω) (term h11(ω)s1).
Source 2 is attenuated by the factor det{W(ω)} c12(ω)

c11(ω)

and it is perceived at the same location as source 1. In
contrast to the approach described in Section 2.2, we do
not perceive source 1 at two locations. This significantly
improves the perception of the spatialized signals.

Equation (19) illustrates that this algorithm is robust to not
invertible demixing matrices. If the demixing matrix is not
invertible in a specific frequency bin, the determinant be-
comes zero. Therefore, the corresponding frequency com-
ponent in the spatialized signal also equals zero. Regular-
ization as described in Section 2.2 is not necessary.

3. SIMULATIONS

We now evaluate the two algorithms which were described
in Sections 2.2 and 2.3. Firstly, we describe the simula-
tion setup. Secondly, we consider two quality criteria: On
the one hand, we determine thetime difference of arrival
(TDOA) based on the spatialized signals. This objective
measure illustrates the performance of both algorithms in
terms of recovering spatial cues. On the other hand, we
describe the subjective perception of the spatialized sig-
nals.

3.1. Setup

In a low-echoic chamber with reverberation timeT60 ≈
50ms, we set up two microphones and two loudspeakers
in front of the microphones. Two clean speech signals
were played back by the loudspeakers and recorded by
the two microphones. Both recorded microphone signals
were processed by the BSS algorithm and by the two in-
vestigated spatialization algorithms, which were all im-
plemented in Matlab. With this setup, we obtain as true
TDOAs corresponding to the two sources: TDOA1,2 =
±8.15 samples.

3.2. Recovered TDOA

We now determine the TDOAs of both spatialized signals.
Therefore, we compute the cross-correlation between the
two channels of each spatialized signal and for each spa-
tialization algorithm. Additionally, we compute the cross-
correlation between the two microphone signals. Figure 2
shows the obtained cross-correlations.

In the top plot, we see the cross-correlation of the two
microphone signals. Although considering only a low-
echoic acoustic environment, we are able to approxi-
mately localize only one source. There is no significant
peak in the cross-correlation corresponding to the second
source.

The center plot and the bottom plot show the cross-
correlation between the two channels of the spatialized
signals. Both spatialization algorithms yield significant

IWAENC 2006 – PARIS – SEPTEMBER 12-14, 2006 3



−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

 two microphone signals

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

two channels of the first spatialized signal

Inverse Demixing Matrix
Adjoint Demixing Matrix

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

two channels of the second spatialized signal

time lags [samples]

Inverse Demixing Matrix
Adjoint Demixing Matrix

Figure 2: Normalized cross-correlation; Correlated sig-
nals are given in the titles; Dashed vertical lines mark lo-
calized sources

cross-correlation peaks. Therefore, we are able to localize
both sources with the correct TDOA.

These results illustrate that – in terms of source localiza-
tion by exploiting the cross-correlation – the spatial cues
of both sources are correctly recovered by both spatializa-
tion algorithms.

3.3. Subjective Perception

By informal listening tests, we investigated the subjec-
tive perception of the spatialized signals. Both spatializa-
tion algorithms result in perceiving the suppressed source
at the same location as the emphasized source. As long
as the source separation performs well, this phenomenon
hardly degrades the subjective perception.

As suggested by the theoretical considerations in Section
2.2, incorporating the inverse demixing matrix yields in-
sufficient spatialization results for imperfect separation.
Perceiving the emphasized source both in the correct di-
rection and in the direction of the suppressed source sug-
gests a highly reverberated acoustic environment, even in
the low-echoic chamber. The subjective perception is thus
significantly degraded.

The spatialization algorithm which incorporates the ad-
joint demixing (Section 2.3) results in subjectively well-

spatialized signals. The emphasized source can be acous-
tically localized by the listener, with the perceived DOA
matching the true DOA given by the simulation setup.
Furthermore, we noticed that neither scaling the sup-
pressed signal (Eq. (19):c12

c11

) nor multiplying both signals
with the potentially small determinant (Eq. (19)) leads to
any audible degradation the subjective perception.

4. CONCLUSIONS

In this paper, we have presented two algorithms which re-
cover the spatial cues in the output signals of blind source
separation. We firstly introduced an approximation of the
unknown mixing system by exploiting the demixing sys-
tem of BSS. Based on this approximation, we derived an
adjoint-based algorithm and an inverse-based algorithm,
which both recover the spatial cues in the BSS outputs by
appropriate post-filtering. This allows source localization
based on the cross-correlations of the spatialized signals.
In terms of subjective perception, the adjoint-based algo-
rithm outperforms the inverse-based algorithm.
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